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Abstract— To assess developmental dysplasia of the hip in in-
fants, evaluations are currently conducted based on 2D ultra-
sound (US) images. Using 3D US has been shown to markedly 
reduce inter-rater variability, but 3D scanners are not widely 
available in pediatric practices. Here, we propose using deep 
learning to estimate the spatial positions of 2D US image se-
quences; this can then be used to form 3D reconstructions. In 
this study, we extracted fan-shaped sets of slices from a database 
of 1403 3D US volumes and trained a previously proposed 
standard convolutional neural network (CNN) as well as two 
variations of a deeper CNN (one augmented with optical flow 
(OF) information) to estimate the angular distances between 
separated slices. The deeper CNN most accurately predicted the 
inter-slice angular displacements, with a mean absolute error of 
0.02˚, for displacements of up to 3.0˚ (corresponding to a center-
frame displacement of 5.3mm). OF did not appear to improve 
prediction accuracy in angle estimation. The deeper CNN also 
achieved a mean end-to-end sweep angle error of -0.8% ± 
13.2%, compared with an error of 25.3% ± 14.7% for the pre-
viously proposed standard CNN. This relatively low error sug-
gests that it may be feasible to accurately reconstruct a 3D rep-
resentation of an infant hip using a 2D US video stream alone, 
without requiring additional probe-tracking devices.1 
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I. INTRODUCTION  

Developmental dysplasia of the hip (DDH) is a malfor-
mation of the hip joint, affecting 1-3% of infants [1]. Cur-
rently, 2D ultrasound (US) probes are used to screen for 
DDH. Unfortunately, due to the inherent difficulty of charac-
terizing 3D anatomy based on 2D US images, diagnosis of 
DDH is prone to large variability, with one study showing 
29% of cases being under-treated [2]. Quader [3] showed the 
inter-rater variability in DDH metrics based on 3D US imag-
ing was reduced by approximately 75% when compared to 
2D US. However, since 3D US probes are not readily 

 
1 Note that this paper is a slightly extended version of a CAOS In-

ternational paper submission. 

available in neonatal clinics, it would be useful to instead re-
construct 3D US volumes from 2D US images. 

Spatial compounding techniques, in which the locations of 
2D US slices are measured using optical tracking tools, have 
been used for many years [4]. In addition, it has been known 
that the degree of speckle correlation between nearby US im-
age planes decreases with distance. Recently, Prevost et al. 
[5] introduced the use of machine learning to infer relative 
positions of sequential 2D US slices and found that adding 
optical flow (OF) information and data from an inertial meas-
urement unit could improve performance. Since then, several 
research groups have offered variations on the deep learning 
approach [6]–[8]. Luo et al [9] proposed adding self-super-
vised and adversarial learning into the training process, mak-
ing use of context cues and shape priors in the volume recon-
struction; their 3D US DDH dataset consisted of 101 volumes 
collected from 14 participants. Most of the proposed ap-
proaches involve position estimation of sequential slices, 
however, we eliminate the temporal aspect and only investi-
gate angular displacements between any two neighboring 
slices. In this study, we assess the performance of the net-
work proposed by Prevost in the specific context of imaging 
for DDH and compare it against two variations of a deeper 
convolutional neural network (CNN) architecture (with and 
without OF information). Our overall goal is to reconstruct 
3D US from spatially located US images, and then apply a 
dysplasia metric extraction algorithm on the reconstruction.  

II. METHODS 

We sample 2D US slices from a database of previously 
acquired 3D US volumes at varying angular displacements. 
Similar to Prevost et al. [5], we use CNNs to predict the angle 
between 2D US images. The training set consists of neigh-
boring slices with varying known displacements. Addition-
ally, we also assess the effect of adding pre-computed OF 
displacement fields between two neighboring slices as inputs 
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to the network. After training the network, a test set collected 
from a separate set of patients is used for evaluation. 

A. Dataset 

Our dataset consists of 1403 3D US volumes of the hip 
from 118 newborns, collected using an Ultrasonix 4DL14-
5/38 probe at 7.5MHz with an image depth of 4cm. Each vol-
ume is composed of 123 B-mode 2D images collected at reg-
ular intervals, spanning an overall angle of 30.1° correspond-
ing to a center-frame sector length of 53.1mm (see 
Figure 1A). This dataset was collected by several graduate 
students over the course of 5 years and was approved by the 
UBC Clinical Research Ethics Board, with certificate num-
bers: H14-01448, H18-00131, and H18-02024. Infants be-
tween the age of 0-6 months who were suspected of having 
or who were diagnosed with DDH were scanned by US radi-
ologists at BC Children Hospital; the scans were included in 
this dataset if they lacked any other congenital hip abnormal-
ities. Both healthy and dysplastic infant hips were included 
in this dataset. 

B. Network 

We implemented the CNN network from Prevost et al. [5], 
but modified the final fully-connected layer to output only 
one displacement value corresponding to an angular rotation 
(see Figure 1B). We also implemented a deeper CNN with 7 
down-sampling layers of the form Conv-BatchNorm-
LeakyReLu. The first 2D convolution used 256 filters and on 
every down-sample we reduced the number of filters by a 
factor of 2.  The Farneback algorithm [10] was also used to 
generate an OF image: a pixel-wise displacement field 
formed from two input images. The deeper CNN was trained 
and tested with the OF image set as an additional input. 

C. Training & Testing 

We divided the participants into training, validation, and 
test sets using a ratio of 70:10:20 (968 volumes from 82 par-
ticipants for training, 143 volumes from 11 participants for 
validation, and 292 volumes from 25 participants for testing). 
Each volume was resampled to obtain 128 isotropic 2D slices 
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Fig 1 A. Example of 3D US volume dataset. Resampled volumes consist of 128 US slices acquired at regular intervals of Δ𝜃𝜃 = 0.235˚. For each training 
step, slices 𝑋𝑋𝑖𝑖 and 𝑋𝑋𝑖𝑖+𝑚𝑚 are sampled randomly from every volume and inputted into the network. B. (Top) Block representation of Prevost et al. [5] network 
with one output channel. (Bottom) Deeper CNN architecture. 
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of size 128×128. As an input to the network, two slices sep-
arated by an angle in the range of [0.235˚, 3.5˚] were selected 
at random. 

For the Prevost network, we trained with the AdaGrad op-
timizer, using a learning rate of 0.1 and a batch size of 128. 
For the deeper CNNs, we implemented the Adam optimizer 
with a batch size of 32 and a learning rate of 0.03. In all cases, 
the objective was to minimize the L2 norm between the pre-
dicted and known angular steps. 

D. Evaluation Metrics 

For each volume in the test set, we selected a random slice 
𝑋𝑋0 and used the trained network to predict the angular sepa-
ration between 𝑋𝑋0  and the 15 subsequent slices. We also 
evaluated the normalized final drift error (the relative differ-
ence between the first and last slices in a sequence normal-
ized by the total trajectory).  

III. RESULTS  

Figure 2A displays the predicted angular displacement 
plotted against the actual displacement, for all three network 
configurations. We calculate the average absolute error as the 
average absolute difference between the mean prediction and 
the ground truth angle (dotted black line) across the range of 
0-3˚. The deeper CNN with and without OF results in the 
lowest average absolute error (both at ~0.02˚), followed by 
the network proposed by Prevost at 0.58˚. 

 Figure 2B shows predicted angular travel for trajectories 
ranging between 2˚ and 27˚; all plots show a strong 

correlation between the predicted and target sweep length. 
The deeper CNN produced the lowest normalized final drift 
errors: -0.8% ± 13.2%, compared with 25.3% ± 14.7% for the 
Prevost network and 4.7 ± 16.5% for the deeper CNN+OF 
(see Figure 2C). A one-way repeated measures ANOVA 
showed that there is a statistically significant difference in the 
average final drift error when comparing the three network 
configurations (F(48,2) = 22.48, p < .001). Post-hoc pairwise 
t-tests showed a meaningful decrease in final drift error when 
implementing the deeper CNN, with and without OF as op-
posed to the Prevost network (adjusted p = .01 and p = .003 
respectively). Including OF when training the deeper CNN 
network, however, did not have a significant impact on drift 
error (adjusted p = .63). 

IV. CONCLUSIONS  

We implemented deep learning methods to estimate the 
relative locations of the different frames in B-mode image 
sequences of infant hips and found that we could estimate the 
angular displacements with an average absolute error of 
0.02˚. Prevost et al [5] evaluated transformations in 6 degrees 
of freedom, involving frame-to-frame speed variations below 
1mm/frame. Here we show that it is possible to accurately 
predict center-frame distances of up to 5.3mm. The use of 
strided convolutions with learnable parameters for down-
sampling may provide higher flexibility for the local aggre-
gation of information [11]. In our case, OF might not have 
proven beneficial due to the large separation between slices. 
Luo et al [9] achieved a final drift error of 5.4% ± 3.0% on 

Fig 2 A: Average predicted angle compared to the target angle, where the shaded region represents one standard deviation, and the black dotted line 
represents  𝜃𝜃�𝑦𝑦 = 𝜃𝜃𝑦𝑦. B: Comparison between estimated and ground truth sweep lengths. C: Average final drift error, computed for trajectories ranging 
between 2˚ and 27˚. 
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their DDH dataset, testing on likely 2 patients; our networks 
were tested on 25 patients and achieved a drift error of 
-0.8% ± 13.2% when considering only angular displacement. 
In the future we expect to extend to 6 degrees of freedom for 
a more accurate comparison, as well as to experiment with 
other deep learning algorithms to reduce the standard devia-
tion in the drift error. We intend to also compare the dysplasia 
metrics evaluated using the reconstructed 3D volumes to 
those extracted from the reference 3D volumes acquired with 
a standard 3D US probe to evaluate the variability introduced 
by the reconstruction process. If the errors are sufficiently 
low, this technique could enable clinicians to make markedly 
more repeatable dysplasia metric measurements using widely 
available 2D US probes. 
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