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ALGORITHMS TO RECONSTRUCT THE TARGET DNA FROM
ITS SPECTRUM CONNECTED AT SOME LEVEL

F. X. Wu* and W. J. Zhang
Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, S7N 5A9

     Abstract: In order to sequence a target DNA, it is first cleaved into many shorter overlapping fragments by
restriction enzymes. Then each such a short fragment is identified as a letter string over the alphabet },,,{ TGCA
called a read fragment. We call the set of all read fragments which covers the target DNA a spectrum. It is believe
that the shortest superstring of its spectrum outlines very well the target DNA. Unfortunately, the problem of finding
the shortest superstring for any given set of strings S  is NP-hard. However, in the biologically meaningful cases, the
problem needn’t be so hard. An observation is that it is not convincible that two read fragments consisting of several
hundred letters, which come from consecutive locations on the target DNA, have only overlap of several letters.
From this observation, one may reasonably assume that strings in the spectrum have enough overlap (connectivity).
A class of important instances satisfying this assumption are those whose spectrum is from DNA array. Based on
this assumption and another about repeat, the main result in the presented paper is: if the spectrum S  of a target
DNA is substring-free and connected at level t , and the target DNA has no repeats of size t  or larger, then there

exist an algorithm to reconstruct the target DNA in )( SO .

1. Introduction
     The reconstruction of the target DNA from its read fragments is also called fragment assembly of DNA. In the
context here, A DNA molecule is a very long polymer chain consisting typically of hundreds of thousands of letters
over the alphabet },,,{ TGCA . At present, techniques and conditions only allow to identify about 500 bases out of

a long single-stranded DNA molecule in an experiment. Therefore, reconstructing DNA is an important step to
sequence a whole DNA molecule. It is biochemists’ belief that the shortest superstring of its spectrum is the most
reasonable outline of the target DNA. Such a shortest superstring representation is likely to be correct if the target
DNA sequence does not have many long repeats (which is often the case in practice).
     Since the problem is NP-hard a lot of effort has been taken to find good approximation algorithms with
guaranteed performance [1-4, 7] or to find efficient and exact algorithms for some restricted problems [5-7]. In this
paper, we try to develop an efficient and exact algorithm for a class of restricted but definitely biological problem.
Our algorithm improves Setubal and Meideanis’s one in [6] and may cover Pevzer’s algorithm to some extent. We
recall some basic definition and facts in section 2. In section3, we first review two existing algorithms related to
ours, then present our algorithm. Finally we give some discussions and future works in section 4.

2. Preliminaries
     Let { }msssS ,,, 21 L=  be a set of strings over some alphabet },,,{ TGCA .  A common superstring, or simply

superstring, of S  is a string s  such that each ),,2,1( misi L=  in S  is a substring of s . The shortest superstring

problem is to find a superstring of the smallest possible length for any given set of strings S . The central concept of
most existing algorithms for this problem is distance graph or overlap graph of the spectrum. Without loss of
generality, assume that the set S  is “ substring-free” in that no string Ssi Œ  is a substring of any other Ssi Œ .  For

two string u  and v , let y  be the longest string such that xyu =  and yzv =  for some nonempty strings x  and

z . The string y  is called the overlap of the ordered pair u  and v , and denoted by ),( vuov , and yvuov =),(

is denoted by ),( vulov (called the overlap function). The string x  is called the prefix of u  with respect to v , and

denoted by ),( vupref . Finally xvupref =),(  is called the distance from u  to v , and denoted by

),( vud (called distance function). After these concepts, the distance graph of S  is defined as a weighted digraph
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),,( wEVGS = , where the set of vertices },,,{ 21 msssV L= , the set of edges }1),{( mjissE ji £≠£= , and

the weight function w  is the distance function ) , (d ; and the overlap graph SH  is defined as a weighted digraph

),,( wEVH S = , where the sets of vertices and edges in 
SH  are the same as those in 

SG , but the weight function

w  in SH  is the overlap function ),( tslov .

      It was proved [6] that a superstring of S  corresponds to a Hamiltonian path in the distance graph SG  or in the

overlap graph SH , and vice verse. Furthermore, either the shortest Hamiltonian path in SG  or the longest

Hamiltonian path in SH  corresponds to the shortest superstring. Given a nonnegative integer t , we define a sub-

graph )(tH S
 of SH  as the weighted digraph keeping only those edges of weight at least t  in 

SH . For a directed

path 
rr iiii ssssP ÆÆ=

-121
,,L  in the overlap graph 

SH , we denote the string

rrrs iiiiiii sssprefssprefsspref ),(),(),(
1321 -

L by )(Ps . Obviously, )(Ps  is the shortest superstring

generated along the path P . Finally we denote string vvupref ),(  by >< vu, .

3. Algorithms

3.1 Two existing algorithms
     Pevzner [5] presented an algorithm to reconstruct the target DNA whose spectrum come from DNA array

consisting of all short known DNA fragments with length l  called probes (its number of fragments is 4l ). This kind

of spectrums possesses the following properties: 1) All strings have the same length l , and 2) Any two consecutive

-l length strings in the target DNA overlaps by 1-l  letters. In addition, Pevzner assumed that each -l length
string appears only once in the target DNA. Exploiting these properties and assumption, he reduce reconstructing the

DNA to finding Eulerian path on a digraph sF , whose set of vertices is the set of all -- )1(l  tuples, and whose set

of edge is the spectrum of the target. Although finding Eulerian path is simple, reconstructing the target DNA

become complicate because Eulerian path is not unique when degree of vertices in sF  is bigger. Gusfield et. al

proved in [7] that the optimal problem is NP-hard when degree of vertices in sF  is greater than 3.

     In [6], Setubal and Meideanis viewed the target DNA as an integer interval. A sampling A of the target DNA
consists of some sub-intervals of the interval. Two intervals a  and b  in A  are said to be linked at level  t  if

t≥« ba . A  is said to be connected at level t  if for every two intervals a  and b  in A  there are a serials of

intervals ia  for li ££0  such that 0aa = , lab =  and ia  is linked to 1+ia  at level t  for 10 -££ li . By

using the properties of interval graph, Setubal and Meideanis obtained:
     Thereom 1: Let A  be a subinterval-free, connected at level t  sampling of the target DNA s  that covers s . If

its spectrum S  was generated by A , and s  has no repeats of size t  or larger, then the digraph )(tH S
 has a unique

Hamiltonian path P  and sPs =)( .

3.2 Improved Algorithm
     There is an unreasonable restriction on Setubal-Meidanis algorithm: In theorem 1, the spectrum S  must be

generated by a sampling A  of the intervals that covers interval s . We can call S  to be interval-dependent. This

means that locations of all intervals in A  were known before s  is constructed by  S . There are some controversies
here. In this section, we try to improve theorem 1 such that it holds for interval-independent string collection.
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     We say that two read fragments is  and js  are linked at level t  if tsslov ji ≥),( .  The spectrum S  is said to

be connected at level t  if for every two strings is  and js  in S  there is either a directed path from is  to js  or one

from js  to is  in 
SH  on which two consecutive fragments (vertices) are linked at level t . The connected at level t

spectrum describes well the assumptions that the two read fragments from consecutive locations in s  must have
enough overlap and all read fragments cover the target DNA. It is obviously that these two assumptions are
biologically reasonably. First we describe our main result as follows:
     Theorem 2 : Assume that the spectrum S  of the target DNA s  is substring-free and connected at level t . If s
has no repeats of size t  or larger, then the digraph )(tH S

 has a unique Hamiltonian path P  and sPS =)( .

     Comparing theorem 1 with theorem 2, it is obviously that we cancelled the restriction in theorem 1 that the
spectrum S  must be generated by a sampling A  of the intervals that covers interval s . Since the spectrum S  is
substring-free, the target DNA s  is the shortest superstring of a Hamiltonian path in the digraph 

SH . To prove this

theorem, we need the following Lemmas.
Lemma 1:  If s  has no repeats of size t  or larger, then there is no directed cycle in )(tH S

, that is, )(tH S
 is an

acyclic graph.

     Proof: By contradiction. Let 
121 iiii ssss

l
ÆÆÆÆ L  be a directed cycle in )(tH S

, so it is also a directed

cycle in 
SH . Since s  corresponds the Hamiltonian path 

SH , there exists some )1( lkk ££  such that either string

><
- kk ii ss ,

1
 or string ><

+1
,

kk ii ss , say ><
+1

,
kk ii ss , doesn’t appear in s . Thus the string

) ,(
1+kk ii ssov appears in two distinct locations in s . This means that there is a repeat ) ,(

1+kk ii ssov  of size t  or

larger in s , so we get a contradiction.  Therefore, we conclude Lemma 1.
     Lemma 2: If s  has no repeats of size t  or larger, then every vertex in )(tH S

 has both in-degree at most one and

out-degree at most one.
     Proof:  We first prove by contradiction that every vertex in )(tH S

 has in-degree at most one under the condition

of Lemma. Assume that there exists some vertex is  with in-degree at least two. Thus there exist two edges ),( ij ss

and ),( ik ss  in )(tH S
. Similarly to the argument in Lemma 1, out of two string >< ij ss ,  and >< ik ss , , at

least one, say >< ij ss , , is not in s , so string ),( ij ssov  is a repeat whose size is t  or larger. Thus we can

obtain that the first conclusion. Similarly, we may prove that every vertex in )(tH S
 has out-degree at most one.

     Lemma 3: If S  is substring-free and connected at level t , and if s  has no repeats of size t  or larger, then in
)(tH S
 there exist exactly one vertex with in-degree zero and exactly one distinct vertex with out-degree zero. And

the other vertices in )(tH S
 have exactly in-degree one and out-degree one.

     Proof: First we notice that digraph )(tH S
 is connected since S  is substring-free and connected at level t .

Therefore every vertex in )(tH S
 has at least either in-degree one or out-degree one because otherwise there exist

some isolated vertex. If there are two vertex is  and js  with in-degree zero, then there is neither a path from is  to

js nor one from js  to is  in )(tH S
. This contradicts with that S  is substring-free and connected at level t .

Therefore there is at most one vertex with in-degree zero in )(tH S
. Furthermore, if there no vertex with in-degree

zero, this means that all vertices have in-degree one by lemma 2.  Thus there is a circle in )(tH S
, it contradicts with

lemma 1. So there is exactly one vertex with in-degree zero in )(tH S
.

     Similarly, we can obtain that there is exactly one vertex with out-degree zero in )(tH S
. Finally we can conclude

that the other vertices in )(tH S
 have exactly in-degree one and out-degree one by employing lemma 2.

     Proof of theorem 2 : By lemma 3, in the digraph )(tH S
 exactly two vertices are semi-balanced and all other

vertices are balanced, so there exist a Eulerian path P  in )(tH S
. Furthermore, every balanced vertex has exactly in-

degree one and out-degree one and the two semi-balanced vertices have exactly in-degree one or out-degree one,
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respectively, so this Eulerian path P  is unique and visits all vertices in )(tH S
 exactly once. Therefore, the path P  is

also a unique Hamiltonian path in the digraph )(tH S
.

     For simplicity, let 
SsssP ÆÆ= ,,21 L . We prove that sPS =)(  by contradiction. Assume that sPS ≠)( , there

exists an edge ji sse Æ=  on path P  that doesn’t occur on the Hamiltonian path corresponding s  in 
SH . This

means that the string ),( ji ssov  occurs two times in s . We have got a contradiction since tssov ji ≥),( .

Therefore, we have completed the proof of theorem 2.
     Since for a given digraph finding a Eulerian path in it can be archived in the linear time )(VO [8], where V  is

the set of vertex of the digraph, we conclude by theorem 2 and its proof:
     Theorem 3  Assume that the spectrum S  of the target DNA s  is substring-free and connected at level t . If s
has no repeats of size t  or larger, then there exists an algorithm that can exact reconstruct s  from its spectrum S  in

linear time )( SO when the digraph )(tH S
 is given.

4.  Some discussions and future works
     Comparing Setubal and Meideanis’s algorithm to our algorithm, it is obvious that we have improved the former
in that the interval -dependent condition of the spectrum S  is removed. Therefore, our algorithm is more useful. On
the other hand, although Pevzner’s algorithm can efficiently find a Eulerian path in the digraph 

sF  which can be

candidate target DNAs, it faces difficulties when degree of vertices in the digraph is great than one. When degree of
all vertices in the digraph

sF  is equal to one, our algorithm is more useful than Pevzner’s algorithm in that our

algorithm may be applied to those problems whose spectrum need not come from DNA array.
When degree of vertices in 

sF  is greater than one, Pevzner’s algorithm will find a number of the candidate target

DNA strings. To choose out one string closest to the target DNA from them, the problem is reduced to find the
optimal Euler path in 

sF  by using some additional experimental information. In a recent paper [7], authors proved

that if the degree of every vertex in 
sF  is exactly two, there exists an algorithm, which find an optimal target DNA

in the certain meaning in linear time, and that if the degree of vertex in 
sF  is equal to or larger than four, finding

optimal target DNA is NP-hard again.
     The structure of repeats in the target DNA plays a crucial rule in designing algorithms to reconstruct it from its
spectrum. Our algorithm here requires no repeats with some size in the target DNA. Although this condition seems
to be somewhat harsh, algorithm may provide some indications when one design algorithm to solve some practical
problems. One future work is to design exact or good approximate algorithms to solve those problems in which the
structure of repeats in the target DNA is known. This information may often be obtained before the target DNA is
reconstructed
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