
I. INTRODUCTION 

 
Rational design of cellular control and 

instrumentation at the molecular level frequently 
requires stochastic modeling [1].  These simulations 
require that measurements of the rate constants of the 
processes involved be available [2].  Unfortunately, 
evaluation of the chemical reaction rate constants in 
stochastic biological systems poses certain challenges 
not present in typical kinetic investigations.  Small 
systems where significant statistical fluctuations 
occur in the reactant concentration yield time-series 
concentration data that is noisy.  In addition, it is 
often difficult to examine specific processes in 
isolation, and as such a single species may undergo 
several distinct reactions.  In such cases it is said that 
the reactant may pass through several different 
reaction channels.  In this paper the analysis of time-
series concentration data is treated probabilistically.  
This allows for the application of estimation theory to 
the problem of rate parameter determination in 
systems where reactant concentration is not a smooth, 
deterministic function of time. 

  
II. STATISTICAL MODEL  

 
Consider a system of M elementary chemical 

reactions occurring in a volume V.  Defining cµ as the 
rate constant for reaction µ, the average probability 
that a particular set of molecules will react according 
to reaction µ in the differential time interval dt is cµdt.  
If there are hµ distinct combinations of reactants that 
can react according to µ then the average probability 
of reaction µ occurring in volume V over time 
interval dt is given by: 
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A system of reactions is coupled when the 
completion of one reaction event affects the 
probability of the other reactions by changing reactant 
numbers.  For a system of coupled chemical reactions 
we define a reaction probability density function 
P(U,µ)dU that gives the probability at time t that the 
next reaction will occur in the interval [t+U, t+U+dU] 
and that the reaction will be of type µ.  The reaction 
probability density function can be calculated as the 
product of hµcµdt and the probability P0(U), that the 
time interval [t,t+U] will be reaction free. 

Following Gillespie [2], the time interval U, may 
be divided into K small intervals of length F = U /K. 
The interval is assumed to be small enough so that 
only one reaction can occur within it.  The binomial 
theorem may then be used to calculate the probability 
of no reaction occurring in the small interval: 
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Since there are K intervals we can write: 
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Taking the limit of the above equation as Kà ∞ 
and using the limit formula for the exponential 
function gives: 
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Now multiplying (1) and (4) yields: 
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So the reaction probability density function 
consists of a series of discrete exponentials with 
different weightings that depend on the propensity of 
each reaction occurring.  For a single reaction, (5) 
reduces to a simple one-dimensional exponential 
distribution. 

 
III. MAXIMUM-LIKELIHOOD ESTIMATORS 

FOR COMPLETELY OBSERVED SYSTEMS 
 
A reacting system is completely observed when 

the creation and decay of individual molecules of 
reacting species can be monitored and recorded.  
Consider the irreversible isomerization reaction, with 
rate parameter c, shown below: 

Y Z
C

 
Reaction 1. A simple isomerization reaction with rate parameter c. 

 

Chemical systems composed entirely of 
elementary reactions are Markov-1 processes.  The 
reaction times are therefore independent random 
variables.  A series of data points (Yi, ti) are collected 
for reactant Y corresponding to the reaction times (ti) 
and number of Y molecules present at those times 
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(Yi).  The conditional likelihood of this observation 
is: 
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Taking the log of both sides of (6), and 
maximizing with respect to c yields the maximum 
likelihood estimate: 
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Since the mean of an exponential distribution with 
decay parameter k is given by 1/k, this result can be 
interpreted as the inverse of the weighted average of 
reaction times.   Calculating the Cramer-Rao lower 
bound for the maximum-likelihood estimate of c 
gives: 
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This result suggests that the variance on the 
estimate of c decreases with the number of sample 
points, and that the variance increases with the square 
of the rate parameter c.  Better performance from the 
maximum likelihood estimator is expected for slow 
reactions rather than for fast reactions. 

When a fully observed reactive species is both 
created and degraded through two individual reaction 
channels, the result of (7) can be applied by grouping 
the data into separate production and degradation 
sets.  Consider the set of coupled Lotka reactions 
commonly used to model predator-prey relationships: 

Y 2Y
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Reaction 2. The Lotka reactions.  Y is a self-replicating species.  Z 
consumes Y to multiply and is itself degraded spontaneously. 

 

If reactant Y is fully observed and we group the N 
reaction event data into M production and (N-M) 
degradation events as described above, then the 
probability of the data is: 
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Following the same procedure used to derive (7), 
it is seen that the maximum likelihood estimate of c1 
is given by: 
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The Cramer-Rao lower bound for this system is 
given by: 
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The lower bound on the variance of the estimate is 
dependent on the observed number of reactions of 
type 1, not the total number of reactions. 

A series of 100 simulations of the Lotka reactions 
was performed with rate parameters c1=10, c2=0.01 
and c3=10 and initial conditions Y=1000 and 
Z=1000.  For each simulation, 10000 reaction events 
were recorded.  A representative result of these 
simulations is shown in the figure below: 
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Figure 1. Stochastic simulation of 10000 Lotka reaction events. 
 

As Figure 1 illustrates, reactant levels are 
inherently noisy for stochastic chemical systems.  The 
maximum-likelihood estimator of (10) was applied to 
each of the 100 sets of simulation results to obtain 
estimates of rate parameter c1.  The mean estimate of 
c1 was 10.0036.  The variance on the estimates was 
0.0261.  These results are consistent with what would 
be expected from (10) and (11). 

 
IV. SPECIES REACTING THROUGH 

MULTIPLE CHANNELS 
 
When a fully observed chemical species is 

produced or degraded through multiple pathways, the 
rate parameter estimation problem is complicated by 
the fact that we cannot know with certainty which 
reaction has occurred.  In this case, rate parameter 
estimation becomes a hidden data problem and 
iterative techniques must be used to obtain estimates.   

The Expectation Maximization (EM) algorithm is 
a general approach for maximum likelihood 
estimation of parameters in statistical models with 



hidden variables [3].  In EM, the complete data is 
viewed as consisting of a set of observable variables 
xi, and the hidden variables wi.  The probability 
model is p(x,w|θ), where θ is the vector of parameters 
to estimate. As the vector w is not observed, the 
complete log likelihood is a random quantity and 
cannot be maximized directly.  In EM an averaging 
distribution, q(w|x), is used to “average out” the 
randomness.  Setting the averaging distribution equal 
to the probability of the hidden variable conditioned 
on the observed variables, P(w|x), allows the 
formulation of an auxiliary function which provides a 
tight lower bound on the complete log likelihood: 
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The EM algorithm has two phases or steps.  In the 
E step, the auxiliary function is maximized with 
respect to the averaging distribution q(w|x). In the M 
step, the auxiliary function is maximized with respect 
to the parameters we are trying to estimate.  This is 
repeated iteratively until convergence. 

The EM algorithm can be applied to the problem 
of rate parameter estimation for chemical species 
reacting through multiple channels by modeling the 
observed data as a mixture of exponential.  Consider 
species Y produced through three separate channels 
with rate parameters c1, c2, and c3 as shown below: 

 

Y 

Z 
P 

2Y 

Y 
Y 

c 1 
c 2 
c 3 

 
Reaction 3. Multi-channel reaction pathway.  Reactant Y is a self-
replicating species.  Reactants Z and P are converted to Y through 
irreversible isomerization reactions. 

 

In the case where Y is fully observed, and the 
concentrations of reactants Z and P can be measured 
as a function of time, the probability of the observed 
data can be modeled as shown below: 
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The θ’s in (13) are the mixture densities of each 
exponential reaction process.  The hµ’s for data point 
i are given by the number of molecules of Y, Z, and P 
for µ = 1, 2, and 3 respectively.  They are denoted in 
(13) by Yi, Zi, and Pi.   

Now, if the observed data x, is treated as the 
reactant concentrations of Y, Z, and P and the times 

of reaction for Y, and the hidden data w indicates the 
reaction channel, then the application of EM becomes 
straightforward.  The averaging distribution q(i)

µ(w|x) 
is simply the probability that observation i is a result 
of reaction process µ, where the q(i)’s normalize to 1 
when summed over the µ reactions.  Derived using 
the techniques of section III, the EM update equations 
for the rate parameters at iteration m are: 
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The Reaction 2 system was simulated 
stochastically for 20000 events with rate parameters 
c1=0.02, c2=0.5 and c3=0.1, and initial conditions 
Y=10, Z=5000, and P=10000.  The results of a 
typical simulation are shown below: 
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Figure 2. Stochastic simulation of 10000 Reaction 3 events. 

 

The data were analyzed using the EM to extract 
estimates of the rate parameters.  After 50 iterations 
of EM, the estimates obtained were c1=0.020, 
c2=0.487 and c3=0.103.  This result suggests that EM 
provides good estimates of the reaction parameters in 
systems where individual reaction pathways cannot be 
experimentally distinguished.      

 
V. TIME-SAMPLED SYSTEMS 

 
The results derived in sections III and IV are 

applicable to chemical systems assuming complete 
observation of one or more reactants.  A more 
realistic situation is one in which individual reaction 
times are not observed, but rather the reactant 
concentrations are sampled at regular time intervals. 

In a given time interval T, the probability of 
observing n events arising from an exponential 
process with decay parameter k is governed by the 
Poisson distribution.  If the reactant concentrations of 
a system could be kept constant, then the observed 



number of reactions in a time interval T would 
therefore be Poisson distributed.  With a high enough 
sampling frequency it is reasonable to assume that the 
total number of reactive species is approximately 
constant over the sampling interval and that the 
number of reaction events is approximately Poisson 
distributed.  This assumption also allows the coupled 
reactions to be treated as statistically independent 
events. 

Unfortunately, for a species reacting through more 
than one channel, each observed change in reactant 
number can arise from an infinite number of 
combinations of reaction events.  If the observations 
are treated as arising from a mixture of Poisson 
distributions and the hidden data is an indicator 
function that tells us which mixture component a 
particular data point arose from, then an EM 
procedure can be derived to obtain estimates of the 
rate parameters.   

Consider the Lotka reactions shown in Reaction 2.  
The concentrations of species Y and Z in the reacting 
system are sampled with a sampling period T.  The 
observed data is defined as the change in the amount 
of species Y at each time point.  Using a Poisson 
mixture model, an expression for the probability of 
the observed data is given by: 
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where mi,j is the number of reaction 2 events that must 
have occurred given the observation and the 
assumption that j reaction 1 events occurred.  The 
hidden data w is a vector of indicator functions 
denoting the mixture component corresponding to 
each observation.  Applying the averaging 
distribution, and forming the expected log likelihood 
of the data allows the EM update equations to be 
derived: 
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This result was tested by sampling the 100000 
event stochastic simulation of the Lotka reactions 
shown in Figure 1, at a sampling rate of 3.27×10-4s to 
obtain 10000 data points spaced equally over the total 
simulation time.  The EM algorithm with 20 mixture 
components was applied to the data.  After 300 
iterations, the rate parameter estimates converged to 

c1=12.76 and c2=0.013.  A plot of the estimates as a 
function of iteration number is shown below: 
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Figure 3. Estimates of rate parameters c1 and c2 as a function of 
EM iteration for a time-sampled Lotka reaction system. 

 

EM gives reasonable estimates of the rate 
constants at the sampling rate selected, and an 
accurate indication of their relative magnitudes.  
Further investigation is required to determine the 
effect of varying the sampling rate and the accuracy 
of this approach for more complicated systems. 

 
VI. CONCLUSION 

 
Maximum likelihood techniques can be applied to 

time-series reactant concentration data to extract rate 
constant parameters.  Reactants passing through more 
than one production or degradation channel present a 
hidden data problem that can be dealt with using the 
EM algorithm.  Time sampled systems may be treated 
in the same manner. The estimation techniques 
developed can be applied to many biological systems 
of interest, and may allow for more accurate 
modeling of biological processes at the molecular 
level. 
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